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Translating our understanding of the core pathophysiology of
Fragile X syndrome (FXS) into treatments for this patient

population constitutes a paradigm shift for central nervous
system (CNS) drug development. Defining the molecular path-
ways leading to neurodevelopmental disorders, in addition to
identifying therapeutic targets, enables discovery of companion
diagnostics and objective efficacy end points, molecular measures
of disease susceptibility and treatment response. FXS, a single
gene disorder that is a leading known cause of autism, may also be
a model for autism research, providing a basis to ask whether
there is a shared pathophysiology that is responsive to treatment.

’FRAGILE X SYNDROME (FXS)

FXS was first described in pedigrees showing intellectual
disability (ID) with X-linkage.1 The name Fragile X syndrome
stems from the cytogenetic assay optimized for the associated
marker X chromosome that appeared as a characteristic con-
stricted region or fragile site on the long arm of the X chromo-
some at position Xq27.3.2 The single gene ultimately
demonstrated to be responsible for FXS was discovered using
positional cloning.3 The FXS mutation is an expansion of a
trinucleotide repeat in the 50 untranslated region (UTR) of the
fragile X mental retardation 1 gene (FMR1). Expansion occurs in
the general population and is considered normal up to 40�50
CGG repeats; a premutation condition occurs between approxi-
mately 55 and 200 repeats. A diagnosis of FXS is confirmed with
expansions greater than 200 CGG repeats. These CpG islands
become methylated, which prevents FMR1 transcription and
results in the loss-of-function mutation.

Because FMR1 is an X-linked gene, FXS is more prevalent in
males (1:4000) than females (1:8000).4 However, inheritance of
FXS is complicated by the mechanism of the trinucleotide repeat
expansion. Expansion is transmitted through the mother. There-
fore, a carrier mother (one with a premutation) may have
unaffected, carrier, or affected children. A carrier father will have
only all carrier daughters and all unaffected sons. Once diag-
nosed, it is important to learn the inheritance pattern for
treatment, prevention, and planning.

Neurological manifestations vary widely and include develop-
mental delays, cognitive disabilities, autism, and seizures. Individuals

can show hypersensitivity to tactile stimulation or other environ-
mental stimuli. Repetitive behaviors such as hand flapping and
perseverative speech are typical. Males often present with a char-
acteristic physical appearance, which can include a long face with
prominent ears andmacroorchidism.Alterations in connective tissue
are common and manifest as loose skin and joints. An altered gait
may also be found. Females are generally less affected5 due to
mosaicism in X-chromosome inactivation, but they show a
spectrum of impairments in intellectual ability frommild learning
disabilities to ID.

’FRAGILE X PREMUTATION

Premutation carriers, initially thought to be free of clinical
symptoms, show distinct phenotypes.6 In approximately 20% of
carrier females, premature ovarian insufficiency (POI) occurs, a
condition associated with early menopause, and in males a late-
onset neurodegenerative condition called Fragile X tremor ataxia
syndrome (FXTAS) occurs. FXTAS is characterized by intention
tremor and ataxia in men over 50. The motor disorders can be
accompanied by a progressive decline in cognitive function,
aberrant behavior including anxiety and mood alterations and
dementia.7 Expansion to the premutation is more prevalent than
occurrence of the full mutation, approximately 1:300 for females
and 1:800 for males. The results of recent studies suggest an
association of lifelong mood and anxiety disorders in premuta-
tion carriers.8

The neuropathology associated with FXTAS reveals nuclear
inclusions in neurons and astrocytes. Although the contents of
nuclear inclusions contain FMR1 mRNA, ubiquitin, RNA-bind-
ing proteins, and nuclear proteins,9,10 the role, if any, in disease
progression remains unclear. These observations, along with the
demonstration of increased FMR1 mRNA levels in premutation
carriers, led to the disease hypothesis that mRNA toxicity
contributes to carrier phenotypes.11,12 However, in murine
models, the premutation not only resulted in increased Fmr1
mRNA but decreased fragile X mental retardation protein
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(FMRP) and altered behavior, dendrite morphology, and protein
synthesis.13 The similar phenotypic alterations in the premuta-
tion mouse as compared to the Fmr1 knockout mouse suggest
that the decreased levels of FMRP, not increased FMR1 mRNA,
explain the clinical manifestations of premutation carriers.
Although additional work is required to support this hypothesis,
understanding the function of FMR1/FMRP in FXTAS may
reveal common molecular pathways in other neurodegenerative
diseases and lead to novel mechanism-based therapies.

’FMRP STRUCTURE AND FUNCTION

Almost two decades of scientific investigation reveal FMRP to be
a multifunctional protein regulating RNA translation in distinct
subcellular compartments. Analysis of FMRP structuralmotifs led to
studies focusing on FMRP function in nuclear binding and export of
nascent RNAs, active transport of cargo mRNAs through the
cytoplasm to dendritic spines, and local regulation of protein
synthesis in response to neurotransmitter signals.14�16

The molecular mechanisms by which FMRP controls protein
synthesis are complex, occur at multiple steps in the synthetic
pathway, and are still not completely elucidated. FMRP contains
three RNA-binding motifs that interact with specific RNA target
elements. Two KH-type domains and a RGG domain interact
with a sequence-specific element termed the FMRP kissing
complex and the intramolecular G-quartet, respectively.17,18

FMRP is part of RNA-protein granules or ribonuclear particles
(mRNP) that associate with polyribosomes.19 The FMRP-con-
taining mRNPs shuttle target RNAs to dendritic spines. A
spontaneously occurring point mutation in human FMRP,
I304N, occurs in one of the KH2 domains and prevents FMRP
from associating with actively translating polyribosomes. The
results of studies examining the I304Nmutation demonstrate the
KH2 domain of FMRP represses protein translation through
direct binding to the mRNA target.20,21 FMRP-containing
mRNPs actively translocate to dendritic spines via the micro-
tubulin cytoskeleton.22�25 Once positioned at dendritic spines,
FMRP regulates protein synthesis through a mechanism of RNA
interference. FMRP associates with dicer and the RNA-interfer-
ing complex (RISC). Dicer processes small interfering RNAs
(siRNAs) and microRNAs (miRNAs), two noncoding RNAs.
Target-mRNA-bound siRNAs and miRNAs incorporate into the
RISC complex, where either the target mRNA is degraded or
translation is inhibited.26�28 Experimental evidence suggests that
FMRP recruits these small RNAs to their mRNA targets.29

Although several FMRP-mRNA targets have been identified,
including FMR1-mRNA itself, the complete list is still under
active investigation.

’THE MGLUR THEORY OF FXS

A neuroanatomical alteration common to some forms of ID,
including FXS, is abnormal dendritic spine morphology.30 Char-
acterization of an Fmr1-deficient mouse showed this same neuroa-
natomical phenotype was conserved across species and provided a
tractable model to investigate the underlying neuropathology.31

The dendritic spine is one point of contact for excitatory synapses,
and synaptic connectivity is essential for experience-dependent
learning and memory. Synaptic plasticity is bidirectional; connec-
tions are continuously strengthened and weakened. The group I
metabotropic glutamate receptors, mGluR1 and mGluR5, mod-
ulate a form of synaptic weakening called mGluR-dependent long-
term depression (LTD).32,33 mGluR-LTD requires synaptic

protein synthesis.34,35 FMRP is a negative regulator of synaptic
protein synthesis and is synthesized locally in response to group I
mGluR activation.36 The initial assumption was that FMRP was
required for mGluR-LTD; however, analysis of synaptic plasticity
in the Fmr1-deficient mouse showed that Fmr1-deficiency caused
exaggerated LTD.37 This finding led to the hypothesis that FMRP
limits LTD by countering mGluR-dependent synaptic protein
synthesis.38 Based on this theory, reducing group ImGluR signaling
either genetically or pharmacologically will reduce synaptic protein
synthesis and in turn correct the fragile X mutant phenotype.

A genetic approach to test the mGluR theory of fragile X
showed correction of all of the neurologic phenotypes measured.
Stimulus-induced seizures, the excessive hippocampal protein
synthesis, the exaggerated LTD, and the increased dendritic
spine density were all reduced to normal levels when Fmr1-
deficient mice were crossed with mice expressing a 50% reduc-
tion in mGluR5.39 Reduction of mGluR5 also corrected the rate
of inhibitory avoidance extinction, a measure of excessive mem-
ory extinction.

Extensive pharmacologic evidence from independent labora-
tories further supports the mGluR theory of fragile X. In addition
to inhibition of induced seizures, the widely used mGluR5
negative allosteric modulator 2-methyl-6-(phenylethynyl)-pyri-
dine (MPEP)40 reduced prolonged epileptiform discharges in
acute brain slices from Fmr1-deficent mice.41 The excessive
protein synthesis measured by metabolic labeling in Fmr1-
deficient mice was also reduced with MPEP treatment, and
alterations in the polysome and RNA granule (ribosomal
clusters) fractions were corrected with MPEP administration,
suggesting FMRP not only regulates mGluR5-induced protein
translation but also affects the translational machinery.42,43

Collectively, these studies provide compelling evidence that
altering mGluR5-dependent protein synthesis may directly affect
the synaptic alterations underlying cognitive and behavioral
phenotypes associated with this syndromic disorder.

’ADDITIONAL FXS TARGETS AT THE SYNAPSE

Altered neurotransmission via the ionotropic glutamate re-
ceptors has recently been reported. In Fmr1-deficient mice,
decreases in the amplitude of N-methyl-D-aspartate (NMDA)
receptor-mediated excitatory postsynaptic currents were mea-
sured in the dentate gyrus of hippocampal slices44 and NMDA
receptor subunits were decreased in prefrontal cortex.45 Reduced
GluR1 and GluR2 R-amino-3-hydroxy-5-methylisoxazole-4-pro-
prionic acid (AMPA) receptor subunits were also measured in
Fmr1 cortex,46,47 and excessive internalization of AMPA recep-
tors is linked to synaptic weakening and altered dendrite
morphology in Fmr1-deficient mice.48

In recent years, the importance of γ-aminobutyric acid
(GABA) inhibitory transmission in FXS has emerged. In the
Fmr1-deficient mouse, region-specific alterations in the GABAer-
gic pathway exist. These include decreased synaptic and tonic
GABAergic inhibition in the amygdala, the latter of which is
reversed using the ionotropic GABAA receptor agonist 4,5,6,7-
tetrahydroisoxazolo[5,4-c]pyridin-3-ol49 and decreased inter-
neuron number in cortex but not hippocampus.50 In contrast,
increased GABAergic tone is observed in the striatum of Fmr1-
deficient mice and likely results from an increase in the prob-
ability of GABA release.51 The relative balance of excitation and
inhibition may also be altered in FXS. In the fragile X fly model,
dfmr-deficientDrosophila fed on a high glutamate diet die during
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development and GABA-treated dfmr mutant flies show correc-
tion of several mutant phenotypes.52 Studies examining induced
seizure activity in mice suggest the opposing actions of mGluRs
and GABAB receptors may provide a therapeutic path for FXS.
Pacey and colleagues showed that, in wild typemice, CGP 46381,
a GABAB antagonist, coadministered with CDPPB, an mGluR5
agonist, induces audiogenic seizures, while either compound
alone had no effect. Of note, the GABAB agonist R-baclofen
rescues the audiogenic seizure phenotype in Fmr1-deficient
mice.53 These results suggest GABAB receptor activation coun-
ters the effects of mGluR5 in FXS.

The opposing actions of GABA and glutamate have recently
been investigated in a murine model proposed for autism
research, the oxytocin receptor deficient mouse. Oxytocin is a
neuropeptide involved in learning and memory and linked to
social behavior. Oxytocin receptor deficient mice show deficits in
social recognition, increased aggression and are susceptible to
seizures.54 Reduced GABAergic synapses were observed in
cultured hippocampal neurons from oxytocin receptor-deficient
mice, suggesting an imbalance in GABA/glutamate transmission
underlies the behavioral deficits.55

The widely used antibiotic, minocycline, also recognized for its
neuroprotective and anti-inflammatory effects on autoimmune
diseases such as rheumatoid arthritis, has recently been applied to
FXS. In a single study, minocycline showed a beneficial effect on
dendritic spine morphology and improved behavioral perfor-
mance in Fmr1-deficient mice.56 The proposed mechanism of
action is thought to be reduction of elevated matrix metallopro-
teinase-9 activity, which may play a role in the synaptic remodel-
ing associated with plasticity.

Lithium, commonly used to treat bipolar disorder, has recently
been tested as a treatment for FXS. Lithium inhibits phospho-
lipase C and glycogen synthase kinase-3β (GSK-3β).57 GSK-3β
is widely expressed in brain, present at high levels in hippocam-
pus, and its enzymatic activity is elevated in the FXS mouse
brain.58 FXS mice treated with lithium showed reversal of some
behavioral phenotypes and partial correction of the dendritic
spine phenotype.59,60

Additional targets implicated from studies of the Fmr1-deficient
mouse include acetylcholine (ACh) transmission through the
muscarinic acetylcholine receptors. Muscarinic-acetylcholine-recep-
tor-stimulated LTD and protein synthesis were altered in Fmr1-
deficient mice, suggesting cholinergic-dependent synaptic plasticity
is signaled in parallel with the mGluR5 pathway.61 Finally, two
enzymes, the small GTPase Rac1 and associated p21-activated
kinase (PAK), that regulate actin polymerization in dendritic spines
and are thought to play a role in plasticity, have been identified as
potential therapeutic targets for FXS. Dysregulation of Rac1 and the
associated PAKwere identified in the Fmr1mouse, and inhibition of
PAK reverses some of the mutant phenotypes.62,63

’MEDICINAL CHEMISTRY OF MGLUR5 NEGATIVE
ALLOSTERIC MODULATORS

Based on the mGluR theory, there continues to be strong
interest inmGluR5 antagonists as a potential therapeutic approach
to FXS. Indeed, the focus of medicinal chemistry efforts that could
contribute to new pharmacologic agents for the treatment for FXS
have largely focused in this area. Several reviews64�67 have
appeared in the past few years describing efforts to design effective
negative modulators of mGluR5 suitable for clinical development,
including a comprehensive medicinal chemistry review in 2009 by

Lindsley and Emmitte.68 Those reviews also covered emerging
thoughts around the therapeutic utility of mGluR5 antagonists as
well. More recent medicinal chemistry activities in the mGluR5
arena will be described herein. It should first be noted that a great
deal of the preclinical work surrounding mGluR5 antagonists has
been carried out in the context of disease applications other than
FXS, such as anxiety, pain, GERD, and others. It is generally
considered that new mGluR5 antagonists could have many
potential applications, including in FXS where a strong mechan-
istic rationale exists. Importantly, early clinical trials in FXS have
shown some promise, including encouraging results from both an
open label trial with fenobam (compound 1, Figure 1)69 as well as
a randomized double-blind trial with the Novartis compound
AFQ056.70 With the exception of fenobam, specific chemical
structures of the most advanced compounds for FXS have not
been revealed in the literature. As noted in aforementioned
reviews, much of the chemistry in the mGluR5 antagonist arena
has focused onmodification of the early prototype alkyne-contain-
ing compounds MPEP (compound 2) and 3-((2-methyl-4-thia-
zolyl)ethynyl)pyridine (MTEP, compound 3). More recent
medicinal chemistry activity has for the most part diverged from
1,2-diarylalkyne analogues and has focused on novel chemical
scaffolds, resulting from either rational drug design or new high
throughput screening campaigns. In the former case, the structure
�activity relationship (SAR) around known pharmacophores
derived from studies on MPEP and MTEP continues to be
employed, as demonstrated in the first three papers referenced
below.

In an extension of previous work,71,72 a group from theNational
Institute on Drug Abuse (NIDA) presented new aryl quinolines
and aryl benzothiazoles,73 wherein rigid nonalkyne analogues of
MPEP and MTEP were optimized. In this work, it was demon-
strated that the SAR of MPEP could effectively be applied to the
new scaffolds, yielding potent noncompetitive antagonists with
EC50s in the range of 60�100 nM in vitro (e.g., compound 4). In
vivo work on these compounds has yet to be reported.

In yet another example of furthering the understanding around
known pharmacophores useful for antagonizing the mGlu5 re-
ceptor, the Vanderbilt group investigated the SAR of a series of
compounds anchored by 3-cyano-5-fluoro-benzamides (structure
5), a substructure known to impart good potency in other series of
mGluR5 antagonists.74 Two potent compounds were character-
ized, amethylthiazole analogue (compound 6) and a chlorophenyl
analogue (compound 7), and shown to have good pharmacoki-
netics (PK) characteristics upon IP dosing in rats.

A more traditional rational drug design approach was under-
taken by Burdi et al.75 starting with known pharmacophores from
early mGluR5 antagonist programs at Novartis and Merck as the
basis to design new chemotypes, including a number of analo-
gues around an oxazolopiperidine structure. Further elaboration
of this scaffold ultimately led to a very potent oxazolo-axepine
(compound 8). Note that compound 8 also contains the afore-
mentioned 3-cyano-5-fluoro aniline substructure. This com-
pound, despite showing good brain penetration and high
receptor occupancy, was not sufficiently robust from a PK
standpoint for further development.

A good example of new chemical scaffolds arising from high-
throughput screening (HTS) comes from the Vanderbilt group,
where several non-MTEP chemotypes have been reported. A
novel series of anilinoquinazolines (e.g., compound 9) were
reported76 to demonstrate good potency against mGluR5, and
though they do not resemble MTEP, they, like most mGluR5
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antagonists of any structural chemotype, still bind at the MTEP
site as revealed by inhibition of binding of a radioligand at that
site. A second report from that group77 detailed potent benza-
mide analogues (e.g., compound 10), also reported as being
derived from an HTS run. Again, these novel chemotypes appear
to bind at the MTEP site. Both of these reports focus on early hit
elaboration and on understanding the pharmacology of the new
chemotypes. Complexities are clearly evident when attempting
to correlate structure to mode-of-binding activities.

Two reports also came out of the laboratories of Gideon Richter
describing hit-to-lead efforts around new HTS hits. The first78

describes novel tetrazole compounds (compound 11), and the
second79 describes potent carbamoyloximes (compound 12), result-
ing in low nanomolar mGluR5 antagonists, with some early CYP
optimization. These compounds are at the early stages of elaboration.

An additional description of a novel scaffold arising from HTS
was reported by the Novartis group.80 A series of piperidyl amides,
characterized by structure 13, were expanded to ultimately yield a
potent compound (compound 14), wherein R1 is substituted with
an ethyl groupwith theR configuration (theR analogue being about
10� more potent than the S analogue). In vitro radioligand

displacement assays showed that compound 14 bound to the
previously characterized allosteric binding on mGluR5. Compound
14 displayed good pharmacokinetic parameters in the rat, showed
good efficacy in three rat anxiety models, and had a good PK/PD
correlation as well. The authors state that this compound was
considered for further development.

It is yet to be seen whether compounds resulting from rational
drug design efforts or HTS-derived novel scaffolds can be
elaborated into advanced lead compounds with requisite proper-
ties for advancement into preclinical and ultimately clinical trials.
However, it is an exciting time for the discovery and development
of mGluR5 antagonists for FXS, as multiple compounds are
advancing in clinical trials.

’THERAPEUTIC INTERVENTIONS

Arbaclofen. The biological action of the racemic drug baclo-
fen, used clinically as an antispastic agent for over 30 years, is
known to reside with the active R-enantiomer or arbaclofen.81�86

It is exerted through the metabotropic GABAB receptor for the
amino acid, GABA, which is recognized as the main inhibitory

Figure 1. Structures of prototypical mGluR5 NAMs 1�3, and novel chemotypes 4�14 indicating the company/university that developed them.
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neurotransmitter in the CNS.83,87�89 Of relevance to the treat-
ment of FXS, baclofen inhibits the neuronal presynaptic release
of glutamate which in turn acts to block downstream signaling
from mGluR5.90�92 In addition, specific deficiencies in GABA
neurotransmission have been found in FXS49 that arbaclofen
treatment could also possibly correct. Seaside Therapeutics
currently has clinical trials ongoing with arbaclofen or STX209
in patients with FXS and autism spectrum disorders (http://
www.seasidetherapeutics.com/).
Modulating Glutamate in FXS. A number of potential

therapeutic interventions targeting FXS have been investigated
in recent years, and many focused on modulation of glutamate
signaling in the brain.
The possible contribution to FXS pathophysiology of dysre-

gulated glutamate receptor activity through the ionotropic path-
way involving the NMDA receptor was studied in an open-label
clinical trial using the NMDA receptor antagonist,
memantine.93,94 From a total of 6 patients studied, 4 showed
global clinical benefit as measured on the Clinical Global
Impression-Improvement subscale (CGI-I) over an approximate
35 week treatment period while 2 of the patients developed
treatment-limiting irritability.95 Spurred by these findings, The
University of California, Davis in collaboration with Forest
Laboratories and the National Institute on Aging are recruiting
a randomized, double-blind, placebo-controlled study in 180
Fragile X premutation carriers (CGG repeat 55�200) that have
neurological symptoms (http://clinicaltrials.gov/ct2/show/
NCT00584948?term=FragileþXþsyndrome&rank=26). Neu-
rocognitive end points are being utilized as outcome measures.
AMPA receptor down regulation has been implicated as

another contributory mechanism to glutamate receptor imbal-
ance in FXS.96 Cortex Pharmaceuticals sponsored a study of the
AMPA receptor positive modulator (ampakine) CX516 in a 4
week placebo-controlled oral dose trial in adults with FXS (600
mg TID for 7 days, then 900 mg TID for 3 weeks) but were
unable to show any associated improvement in memory, lan-
guage, or attention/executive function.97 Riluzole is approved by
the U.S. Food and Drug Administration (FDA) for the treatment
of amyotrophic lateral sclerosis and has shown beneficial clinical
effects in depression and obsessive-compulsive disorder
(OCD).98 Together with its postulated mechanism of action
through inhibition of glutamate release, blockade of the excito-
toxic effects of glutamate, and enhancement of postsynaptic
GABAA receptor function in the CNS, it has been considered a
possible treatment for FXS. In an open-label 6 week clinical trial
of riluzole (50 mg orally once daily for 1 week then increased to
twice daily for 5 weeks) in 6 adults with FXS, no significant or
consistent clinical improvement was demonstrated using the
CGI-I subscale or other measure of OCD.98

mGluR5 Antagonists.The first trial of an mGluR5 antagonist
was conducted with fenobam.69 This trial, sponsored jointly by
The FRAXA Research Foundation and the U.K.-based company
Neuropharm, was a single dose, open-label study of 50�150 mg
fenobam in 6 male and 6 female adults with FXS as an initial
evaluation of safety and PK. No significant adverse reactions to
fenobam were observed. Dose-dependent PK exposure was
demonstrated in Cmax that occurred around 180 min postdose
and resembled normal volunteer PK, but showed high inter-
individual variability. Three subjects experienced sedation, while
9 of the patients were reported to exhibit calmed behavior with
improvement in eye contact, ability to interact, anxiety, and/or
motor overactivity. Changes in prepulse inhibition met the

response criterion in 6 patients following fenobam. These are
encouraging results for this means of glutamate receptor-based
therapeutic intervention. Novartis Pharma AG, Hoffmann La-
Roche, and Seaside Therapeutics have advanced mGluR5 an-
tagonists into clinical trials. The Novartis compound has ad-
vanced into a larger trial in FXS patients based on data from a
pilot study; these findings are discussed later in this review. The
Roche study is a randomized, placebo-controlled, double-blind
multiple ascending dose study with RO4917523 treatment over a
6 week period to evaluate safety and tolerability, PK and
exploratory efficacy, and pharmacodynamic effects in adult
patients with FXS (http://clinicaltrials.gov/ct2/show/NCT-
01015430?term=FragileþXþsyndrome&rank=15). Up to 100
patients are planned to be recruited for this study. Seaside
Therapeutics has been progressing STX107 in single and multi-
ple oral dose clinical trials in normal volunteers to assess safety
and tolerability, PK, and exploratory pharmacodynamic
effects (http://clinicaltrials.gov/ct2/show/NCT00965432?term=
FragileþXþsyndrome&rank=24). Seaside anticipates moving
into FXS patients with this agent during 2011.
Other Mechanism-Based Approaches. The peptide hormone

oxytocin, a nonapeptide acting through aG-protein coupled receptor
mechanism, is produced mainly by neurosecretory cells of the CNS
and regulates a range of CNS functions.99 It has been reported to
have beneficial effects on CNS function, notably social
behaviors.99,100 Interestingly, it has been linked with therapeutic
potential in autism spectrum disorders.101 A randomized double-
blind, placebo-controlled clinical trial with oxytocin (24 or 48 IU), in
up to 12 adolescent male patients with genetically confirmed FXS, is
in progress at Stanford University (http://clinicaltrials.gov/ct2/
show/NCT01254045?term=FragileþXþsyndrome&rank=11). A
variety of behavioral, cognitive, and physiological measures were
employed to test for an efficacy signal, but to date no results have
been reported.
Recent findings with the antibiotic minocycline have linked its

matrix metalloproteinase inhibitory activity with the rescue of
hippocampal dendritic spine development in Fmr1-deficient
mice.56 In an open-label 8 week clinical trial with 20 FXS patients,
ages 13�32, randomly assigned to receive 100 or 200 mg of
minocycline daily, statistically significant improvement in the
Aberrant Behavior Checklist-Community Edition (ABC-C) Ir-
ritability subscale, Visual Analog Scale for behavior (VAS), and
the CGI scale were reported.102 Correction of the underlying
neural defects that account for behavioral abnormalities in FXS
by minocycline remains a possibility requiring further rando-
mized, placebo-controlled clinical trial substantiation.
An open-label trial with lithium (0.8�1.2mEq/L), reported to

reduce mGluR-activated translation and reverse phenotypes in
fragile X preclinical models, showed functional improvements in
15 individuals with FXS, aged 6�23, over a 2 month treatment
period, suggesting further clinical evaluation is warranted.103

Functional cholinergic deficits may contribute to cognitive and
behavioral dysfunction observed in FXS.104 Enhancement of choli-
nergic function in the brain through administration of the acetylcho-
linesterase inhibitor donezepil (5mgdaily for 3weeks, followed by 10
mg daily for 3 weeks) was associated with improvement onmeasures
of cognition and behavior in an open-label trial involving 8 FXS
patients 14 years of age and older.104 A randomized, placebo-
controlled trial with donezepil (2.5�10 mg for up to 12 weeks) in
up to 50 individuals with FXS, ages 12�29 years, is currently in
progress (http://clinicaltrials.gov/ct2/show/NCT00220584?term=-
FragileþXþsyndrome&rank=8).
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Recent Clinical Trial Directions. In the last year Novartis Pharma
AG and Seaside Therapeutics have reported positive outcomes from
blinded, placebo-controlled clinical trials in Fragile X patients. The
Novartis study with their agent AFQ05670 examined impact on the
behavioral symptoms of FXS in a randomized, double blind, two-
treatment, two-period, crossover design in30male adult patients, ages
18�35 years. A titration schedule was used for AFQ056 oral
administration involving 50 mg twice daily on study days 1�4, 100
mg twice daily on days 5�8, 150 mg twice daily on days 9�20, 100
mg twice daily on days 21�24, and 50mg twice daily on days 25�28.
AFQ056 plasma concentrations were expected to reach steady state
within 3�4 days. The compound had an approximate 20 h elimina-
tion half-life. Twenty-four of these patients experienced an adverse
event, mostly mild to moderately severe fatigue or headache. No
significant effects of treatmentwere detected on the primary outcome
measure, the ABC-C score measured on day 19 or 20 of treatment.
However, an exploratory analysis of the study data pointed to a
statistically significant (P < 0.001) improvement in the ABC-C score
for the subset of 7 patients who had full methylation of the FMR1
promoter and no detectable FMR1 mRNA. An eighth patient who
had partial methylation but no detectable FMR1 mRNA was not
included in the subset analysis. Novartis initiated a further placebo-
controlled multicenter clinical phase II/III 12 week treatment study
with three oral dose levels of AFQ056 (25, 50, and 100 mg) in
November 2010 to further assess safety and efficacy in a larger group
of 160 adult FXS patients 18�45 years of age (http://clinicaltrials.
gov/ct2/show/NCT01253629?term=FragileþXþsyndrome&rank=
1). The primary outcome measure is change from baseline in
behavioral symptoms of FXS using the ABC-C total score. Results
are anticipated between late 2011 and early 2012.
Seaside Therapeutics, with their GABAB agonist, STX209,

completed the largest randomized, placebo-controlled phase II
study in FXS patients to date. Sixty-three patients, ages 6�40
years, with a Fragile X full mutation and a minimum severity on
the ABC-I scale participated in a double-blind design trial to
assess safety, tolerance, and efficacy across a broad range of
behavioral and cognitive outcomes (http://www.seasidethera-
peutics.com/). Dosing involved a flexible titration to the optimal
titrated dose (1 mg up to 10 mg BID for subjectse11 years, and
up to 10 mg TID for all other subjects), which was well tolerated.
STX209 treatment showed a positive trend for the per protocol
population of 54 patients across a range of global measures that
included the CGI-I scale, the CGI-Severity (CGI-S), and in-
vestigator and caregiver treatment preference, but it did not meet
its primary end point of improvement in the ABC-I scale relative
to placebo. Interestingly, for 27 patients in the study with more
severe impairment in sociability at baseline, STX209 treatment
was associated with statistically significant improvements on all
global measures. Two focused measures of social function, the
ABC-Social Withdrawal and the Vineland Socialization domain
score, also showed statistically significant improvement in that
subset of patients. Seaside Therapeutics initiated larger registra-
tion clinical trials for STX209 in FXS during 2011.

’CONCLUDING REMARKS

Both the Novartis and Seaside trials have provided insight into
the challenges faced to achieve positive clinical trial outcomes in
this syndromic disorder. The selection of appropriate indices of
efficacy represents an area of uncertainty, as it is not possible to
translate directly from animal responses to specific outcome
measures in human clinical trials. Similarly, dose level and dosing

duration cannot be predicted with certainty from the preclinical
data. Furthermore, the requirement for full methylation status of
the FMR1 promoter and no detectable FMR1 mRNA, if sub-
stantiated in large numbers of patients, may limit the treatable
patient population generally for mGluR5 antagonists, but equally
well it could speak to targeted drug therapy in this population. In
conclusion, the recent clinical introduction of multiple com-
pounds representing a variety of mechanistic approaches to the
disorder represents an exciting opportunity to realize the mission
of implementing effective treatments of ID.
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